What is Cognitive Psychology?

Cognitive Psychology is the study of how people perceive, remember, think, speak, and solve problems.
Part A is called the frontal lobe. The prefrontal area is towards the front of the frontal cortex.

Part E is called the Basal Ganglia.

The brain works together as a whole to control our actions, so we look at certain parts of the brain to understand the thought processes of both people and animals.
Attention

The mind’s ability to focus on what is going on in its surroundings

Manipulation of Attention

Top-down attention - the brain actively ignores or doesn't focus on something
Bottom-up attention - the brain directly focuses on something

Change blindness: When people fail to notice changes to objects and scenes in their environment

Inattentional blindness: Failure to perceive objects and notice a change in environment because of the brain's focus on one thing at a time
What is Multi-Tasking?

The brain is never actually focusing on two tasks at the same time, instead it is switching focus back and forth between two tasks; therefore it is actually split.

Split attention can be detrimental to quality, memory, performance, and accuracy.

Multitasking can lead to:

Dual-task interference: which takes place when two cognitive tasks are done at the same time.

And/Or

Continuous partial attention: when focus is continuously split between two or more tasks.
Introduction: Continued

Memory

A cognitive process in which we are able to encode, store and retrieve information.

Memory makes us
Helps us to recall the who's, what's, where's, and when's
We are who we are because of memory
Effects of Divided Attention on Motor Skills and Subsequent Memory

Prior work shows that multitasking often leads to slower and less accurate performance than doing either task alone. People believe they are good at doing both. Evidence suggests they are not as good as they believe.
How often do people multitask and how good do they think they are at it?

Attempting to engage in two non-related tasks at once can have a detrimental impact on learning (Wood et al., 2011)

Is there congruence between subjective and objective reports of attentiveness?
How much do we notice in our environment?

Prior work on inattentional blindness has shown that although people often think they are observant and will notice changes in their environment, they are surprisingly unobservant (Simmons & Chabris, 1999)
According to Simons & Chabris (1999):

"We perceive and remember only those objects and details that receive focused attention."

Hyman et al. (2009) found:

"Cell phone users were less likely to notice an unusual activity along their walking route (a unicycling clown)."

"Cell phone usage may cause inattentional blindness even during a simple activity that should require few cognitive resources."
Our studies focus on...

The relation between attention, multitasking and memory. How subjects performance is impaired when multitasking and memory are combined together. To determine whether performance is impaired by multitasking.
Our Hypotheses

Motor task should take longer and memory for details should be more impaired under divided attention than under full attention.

Based on prior work, fewer than half the participants should notice the change in the background during the inattentinal blindness task.

Do people who claim to be attentive detect changes faster in the change blindness task?
Method: Materials

Materials:

- 2 biographies from Wikipedia (Miles Davis and Herman Melville)
- 30 general knowledge questions (used during Divided Attention Motor Task)
- A questionnaire on technology use and cognitive styles
- Youtube video of inattentional blindness
- Change blindness picture
Method: Motor Task

Participants were randomly assigned
Tasks focus: Attention and cognitive skills.
Individually tested
They were seated in front of a computer with a blank word document
Participants read given biographies
They were timed while reading and typing the biographies
Method: Motor task continued...

During the full attention task:
participants were asked to type the biography word for word on the computer as it appeared on the paper, and were timed during the activity.

In the divided attention group:
participants were given the same instructions from the full attention task, except while typing, they were asked general knowledge questions, such as: what are the colors of the rainbow, in order?
participants were given the option to pass on a question they did not know the answer to and were asked to do so only if necessary
then we recorded the time it took for them to complete the motor task.

Next participants were then given a memory task of ten questions on the biographies they initially read in the full and divided attention tasks.
Method: Inattentional Blindness

Participants were instructed to watch a video that showed two teams (black shirts vs. white shirts) playing basketball. Participants were asked to count the number of passes made to the team wearing white. After watching the video, participants were asked to report the number of passes and asked if they saw anything unusual. If so, they were asked to describe what they saw. How many noticed the dancing bear?
Method: Change Blindness

Then, participants were shown two identical pictures of a fruit stand, with a mask in between them. One picture had a slight difference (there were more oranges in the second picture). They were told to point and say stop once they found the difference. They were given 3 minutes to detect the difference. After three minutes if the participant did not find the difference, the tasks was stopped. When the experiment was over, the participant was debriefed.
Results:

Results showed that when people typed under the divided attention condition they took significantly longer to finish typing the passage (M = 398.76 seconds) than when they were under the full attention condition (M = 261.76 seconds), t(24) = -8.059, p < .001.
Results showed there was a marginally significant trend for people to answer fewer questions correct when under the divided attention condition (M = 80%) than when under full attention (M = 88.8%), t(24) = 1.844, p = .078.
Results: Inattentional Blindness

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes saw bear</td>
<td>2</td>
<td>8%</td>
</tr>
<tr>
<td>No did not see bear</td>
<td>23</td>
<td>92%</td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>100%</td>
</tr>
</tbody>
</table>

Previous studies show that only 1/3 – 1/4 of people will not notice the dancing bear. However, our results were higher than expected. 92% of participants in this study did not see the dancing bear.
Results: Self-Report Questionnaire

Question 6: How often do you text on cell phone or IM on Facebook while studying or reading?

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never</td>
<td>4</td>
</tr>
<tr>
<td>Rarely</td>
<td>0</td>
</tr>
<tr>
<td>Sometimes</td>
<td>9</td>
</tr>
<tr>
<td>Often</td>
<td>9</td>
</tr>
<tr>
<td>Very Often</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
</tr>
</tbody>
</table>
Question 7: I perform just as well while studying or reading when I text or IM as when I do not text or IM

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never</td>
<td>4</td>
<td>16%</td>
</tr>
<tr>
<td>Rarely</td>
<td>9</td>
<td>36%</td>
</tr>
<tr>
<td>Sometimes</td>
<td>8</td>
<td>32%</td>
</tr>
<tr>
<td>Often</td>
<td>3</td>
<td>12%</td>
</tr>
<tr>
<td>Very Often</td>
<td>1</td>
<td>4%</td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>100%</td>
</tr>
</tbody>
</table>
Results: Self-Report Questionnaire

Question 12: When I am in class or at work, I tend to daydream and let my mind wander when I am bored

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Rarely</td>
<td>6</td>
<td>24%</td>
</tr>
<tr>
<td>Sometimes</td>
<td>6</td>
<td>24%</td>
</tr>
<tr>
<td>Often</td>
<td>10</td>
<td>40%</td>
</tr>
<tr>
<td>Very Often</td>
<td>3</td>
<td>12%</td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>100%</td>
</tr>
</tbody>
</table>
Results: Self-Report Questionnaire

Question 14: I am very good at noticing and remembering details

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Rarely</td>
<td>4</td>
<td>16%</td>
</tr>
<tr>
<td>Sometimes</td>
<td>10</td>
<td>40%</td>
</tr>
<tr>
<td>Often</td>
<td>8</td>
<td>32%</td>
</tr>
<tr>
<td>Very Often</td>
<td>3</td>
<td>12%</td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>100%</td>
</tr>
</tbody>
</table>
Discussion

There were several findings in our study:

- The age group of the participants that were tested in this study tend to text or instant message while studying.
- They also tend to listen to music while reading.
- If participant reported being good at noticing and remembering details, they were quicker at recognizing the change in the change blindness task.
People who reported being good at multitasking were just as distracted during the divided attention task as participants who didn't claim to be good at multitasking.
Tips for saving energy

Prioritize prioritizing, as it’s an energy-intensive activity
Schedule the most attention-rich tasks when you have a fresh and alert mind
Plan and go through with goals that you can manage for the day
Tips for understanding complex info.

- Simplify information by approximating and focusing on an idea’s most important elements
- Group information into chunks whenever there is too much to take in
- Practice getting the most energy-consuming and difficult tasks done before the easier ones
Tips for Multitasking

Catch yourself doing two things at once and slow down instead
Repeat tasks whenever you can
Get tasks into a neat and functional order
Tips for avoiding distractions

When you need to focus, remove all external distractions completely. Reduce the likelihood of internal distractions by clearing your mind before embarking on difficult tasks. Get rid of distractions before your attention is completely taken by them.
References

Acknowledgments

Thank you......

National Institute of Health (NIH)
Dr. Shelly Phelan
Dr. Linda Henkel
Gabriela Rodriguez
Chelsea Morales
All our BASE Camp participants